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Abstract—In the automotive industry, there is currently
great interest in supporting driver-assist and autonomous-
control features that utilize vision-based sensing through cam-
eras. The usage of graphics processing units (GPUs) can poten-
tially enable such features to be supported in a cost-effective
way, within an acceptable size, weight, and power envelope.
OpenVX is an emerging standard for supporting computer vi-
sion workloads. OpenVX uses a graph-based software architec-
ture designed to enable efficient computation on heterogeneous
platforms, including those that use accelerators like GPUs.
Unfortunately, in settings where real-time constraints exist,
the usage of OpenVX poses certain challenges. For example,
pipelining is difficult to support and processing graphs may
have cycles. In this paper, graph transformation techniques
are presented that enable these issues to be circumvented.
Additionally, a case-study evaluation is presented involving
an OpenVX implementation in which these techniques are
applied. This OpenVX implementation runs atop a previously
developed GPU-management framework called GPUSync. In
this case study, the usage of GPUSync’s GPU management
techniques along with the proposed graph transformations
enabled computer vision workloads specified using OpenVX
to be supported in a predictable way.

I. INTRODUCTION

In the automotive industry today, vision-based sensing
through cameras is being used to support features such as
automatic lane-keeping, adaptive cruise control, etc. In the
coming years, such features are expected to evolve to include
360-degree sensing, which will ultimately be integrated
with actuation logic that supports partial or full autonomy.
To enable cost-effect deployments of such features, within
an acceptable size, weight, and power envelope, multiple
vision-based processing streams must be consolidated onto
a single hardware platform in a way that enables real-time
requirements to be validated.

With regard to such a consolidation, multicore platforms
augmented with graphics processing units (GPUs) offer
a promising way forward, as GPUs are well suited for
accelerating the matrix-oriented computations inherent in
many computer vision applications. To ease the development
of such applications on heterogeneous architectures such
as multicore+GPU platforms, a standard computer vision
API called OpenVX has been created and ratified [1].
Unfortunately, several aspects underlying the design of
OpenVX make validating real-time requirements problem-
atic, despite the fact that real-time applications are an
intended use case [2]. This is disconcerting, given that
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OpenVX undoubtedly will be adopted as a standard in
many settings where such requirements exist.
Problems with OpenVX. The OpenVX API provides the
programmer with a set of basic operations, or primitives,
commonly used in computer vision algorithms.1 A computer
vision algorithm is constructed by instantiating primitives
as nodes and linking node outputs to node inputs to create
a computer vision processing graph.

OpenVX has a simple execution model,2 which simplifies
its API and implementation and allows it to perform well
on processors with a wide range of capabilities, ranging
from simple ASICs to complex multicore+GPU platforms.
However, this model imposes three significant implications
on real-time scheduling. First and foremost, the specification
has no notion of a repeating (i.e., periodic or sporadic3) task,
and lacks any framework for real-time analysis. With respect
to analysis, a key issue is the allowance of “back edges” that
can create cycles in a graph. Second, the specification does
not define a threading model for graph execution. Finally,
the specification requires a graph to execute end-to-end
before it may be executed again. This significantly hinders
the ability to exploit parallelism by “pipelining” portions of
a graph’s structure to improve performance.
Contributions. In this paper, we examine these real-time-
related shortcomings of OpenVX in detail and present
ways of mitigating them. Our specific contributions are
threefold. First, we report on our efforts to implement a
variant of OpenVX that is amenable to real-time analy-
sis. With support from NVIDIA, we adapted an alpha-
version of an NVIDIA OpenVX implementation called
VisionWorks® [3] to run atop PGMRT (a graph-based mid-
dleware developed by our group previously [4]), GPUSync
(a real-time GPU management framework developed by our
group previously [5, 6]), and LITMUSRT (a real-time Linux
extension jointly maintained by our group and MPI [7]).4

Second, we explain how to transform OpenVX graphs to
eliminate cycles due to back edges and support pipelining.
These transformations enable real-time constraints to be
validated. The specific constraint we consider is that “end-
to-end” graph response times are provably bounded. Third,

1In OpenVX, these basic operations are called “kernels.” We avoid this
term to eliminate confusion when referring to GPU and OS kernels.

2From Sec. 2.8.5 of the OpenVX standard [1]: “[A constructed graph] may
be scheduled multiple times but only executes sequentially with respect
to itself.” Moreover: “[Simultaneously executed graphs] do not have a
defined behavior and may execute in parallel or in series based on the
behavior of the vendor’s implementation.”

3We assume familiarity with the sporadic and periodic task models.
4VisionWorks is a registered trademark of the NVIDIA Corporation.
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Figure 1: Example high-level architecture.

we present results from a runtime evaluation of several
configurations of our VisionWorks variant. In particular, we
compare our GPUSync configuration against two purely
Linux-based ones, as well as a LITMUSRT configuration
without GPUSync. Our results demonstrate the efficacy of
our graph transformations and proper GPU management
using GPUSync.
Organization. In the remainder of the paper, we provide
needed background (Sec. II), describe our modified ver-
sion of VisionWorks (Sec. III), present our experimental
evaluation (Sec. IV), and conclude (Sec. V).

II. BACKGROUND

In this section, we present a brief overview of
GPUSync [5, 6, 8] and discuss OpenVX in greater detail.
GPUSync is a GPU management framework designed to
be used on multicore platforms where multiple GPUs may
be present. In describing it, we will consider the platform
depicted in Fig. 1, which is based on that used in our
experimental evaluation. In the depicted platform, each GPU
has one execution engine (EE) (which is comprised of many
parallel processors) and two DMA copy engines (CEs). The
CEs connect to the host system via a full-duplex PCIe bus.
PCIe is a hierarchically organized packet-switched bus with
an I/O hub at its root. The structure depicted in Fig. 1 may
be replicated in large-scale NUMA platforms, with CPUs
and I/O hubs connected by high-speed interconnects.
GPU usage pattern. GPU-using programs execute on
CPUs and invoke a sequence of GPU operations. There
are two types of GPU operations. Kernel operations are
programs executed by a GPU EE. Memory copy operations
are data transfers to or from a GPU’s local memory; these
are processed by the CEs. A general execution sequence for
a GPU-using program scheduled alone is depicted in Fig. 2.
Observe that a program running on a CPU initiates GPU
operations—the GPU does not initiate them independently.
At time t1, the program selects a GPU to use. At time t2, the
program transmits input data for the GPU kernel from system
memory to GPU memory. The memory copy is processed
by one of the GPU’s CEs. The program waits (it may elect
to either busy-wait or suspend) until the copy operation
completes at time t3. A kernel that operates on the input
data is executed at time t4—computational results are stored

GPU critical section

copy
input

kernel

copy
output

Figure 2: GPU-using program execution sequence.

in GPU memory. The program copies the kernel output from
the GPU at time t6. Finally, the program no longer requires
the GPU at time t8. We call the duration from time t1 to time
t8 a GPU critical section because the program expects its
sequence of operations to be carried out on the same GPU.
GPU operations on the various engines are non-preemptive.
For example, GPUCE0 cannot be preempted within [t2, t3].
Note that this is only a simple execution sequence. Any
number of GPU operations may actually be issued within a
GPU critical section. Also, we have depicted the input and
output memory copies as processed by different CEs—it is
actually up to the GPU to select which CE to use.

GPUSync. In GPUSync, the management of GPU-related
resources is viewed as a synchronization problem and
thus real-time multiprocessor locking protocols are used
to acquire and release such resources. A two-step process
is followed. To access a GPU, a task must first acquire one
of several tokens associated with that GPU using a locking
protocol. Once a token has been acquired, a task may acquire
an engine lock associated with one of the engines (EE or
CE) of that GPU in order to access that engine.

GPUSync is highly configurable. For example, the
number of tokens per GPU is configurable. Also, lock wait
queues may be configured so that tasks wait in FIFO order
or priority order. Other configuration parameters determine
whether and how task state data may be copied from
one GPU to another or to/from host memory. GPUSync
organizes GPUs into clusters (a task may be assigned
a token for any GPU in such a cluster) and the cluster
size is configurable. GPUSync can be used in conjunction
with various partitioned, clustered, or global real-time CPU
schedulers supported in LITMUSRT. Real-time constraints
can be validated when GPUSync is used by applying bounds
on priority-inversion blocking times within conventional
scheduling analysis associated with the assumed CPU
scheduling algorithm.

OpenVX. Computer vision algorithms are commonly
expressed using dataflow graphs. An example is given
in Fig. 3, which depicts a simple pedestrian detection
application that could be used in an automotive application.
In this example, a video camera feeds the source of the
graph with video frames at 30Hz (or 30FPS). The first node
converts raw camera data into the common YUV color image
format. The second node extracts the “Y” component of
each pixel from the YUV image, producing a grayscale
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Figure 3: Dataflow graph of a simple pedestrian detector application.

image. (Computer vision algorithms often operate only
on grayscale images.) The third node performs pedestrian
detection computations and produces a list of the locations
of detected pedestrians. In this case, the node uses a common
“soft cascade classifier” [9] to detect pedestrians. Finally,
the last node displays an overlay of detected pedestrians
over the original color image. To support this pedestrian
detection application in a real-time setting, we require a task
model and implementation that will allow us to exploit the
parallelism inherently expressed by the graph, while still
supporting real-time analysis and predictable execution.

OpenVX is a newly ratified standard API for developing
computer vision applications for heterogeneous computing
platforms. The API provides the programmer with a set of
basic operations, or primitives, commonly used in computer
vision algorithms.1 The programmer may supplement the
standard set of OpenVX primitives with their own or with
those provided by third-party libraries. Each primitive has a
well-defined set of inputs and outputs. The implementation
of a primitive is defined by the particular implementation
of the OpenVX standard. Thus, a given primitive may use
a GPU in one OpenVX implementation and a specialized
DSP (e.g., CongniVue’s G2-APEX or Renesas’ IMP-X4) or
mere CPUs in another. OpenVX also defines a set of data
objects. Types of data objects include simple data structures
such as scalars, arrays, matrices, and images. There are
also higher-level data objects common to computer vision
algorithms—these include histograms, image pyramids, and
lookup tables.5 The programmer constructs a computer
vision algorithm by instantiating primitives as nodes and data
objects as parameters. The programmer binds parameters
to node inputs and outputs. Since each node may use a mix
of the processing elements of a heterogeneous platform, a
single graph may execute across CPUs, GPUs, DSPs, etc.

Node dependencies (i.e., edges) are not explicitly de-
clared. Rather, the structure of a graph is derived from how
parameters are bound to nodes. We demonstrate this with an
example. Fig. 4(a) gives the relevant code fragments for cre-
ating an OpenVX graph for pedestrian detection. The data ob-
jects imageRaw and detected represent the input and out-
put of the graph, respectively. The data objects imageIYUV
and imageGray store an image in color and grayscale
formats, respectively. At line 12, the code creates a color-
conversion node, convertToIYUV. The function that creates
this node, vxColorConvertNode(), takes imageRaw and
imageIYUV as input and output parameters, respectively.
Whenever the node represented by convertToIYUV is
executed, the contents of imageRaw is processed by the

5An image pyramid stores multiple copies of the same image. Each copy
has a different resolution or scale.

color-conversion primitive, and the resulting image is stored
in convertToIYUV. Similarly, the node convertToGray
converts the color image into a grayscale image. The
grayscale image is processed by a user-provided node created
by the function mySoftCascadeNode(), which writes a list
of detected pedestrians to detected.6 Fig. 4(b) depicts the
bindings of parameters to nodes. Fig. 4(c) depicts the derived
structure of this graph.

III. ADDING REAL-TIME SUPPORT TO VISIONWORKS

In this section, we describe our efforts in adding real-
time support to an OpenVX implementation by NVIDIA
called VisionWorks. Our modifications were applied to an
alpha-version of VisionWorks. This alpha-version was under
active development at the time, so the reader should not
assume that statements we make regarding VisionWorks will
necessarily hold when the software is made available to the
public. Also, our work with VisionWorks was funded by
NVIDIA through their internship program—at this time we
are unable to share the VisionWorks-specific software we
developed in this effort,7 since it is the property of NVIDIA.
Those wishing to investigate OpenVX implementations may
find a sample (non-GPU-supporting) implementation of
OpenVX at Khronos Group’s website [2].

Basic implementation overview. We begin by providing a
brief overview of our modifications to VisionWorks (further
details can be found in [8]). Fig. 5 depicts the full software
stack of VisionWorks in different configurations. Fig. 5(a)
depicts the stock VisionWorks software stack. Here, user
applications are written to the VisionWorks API. Internally,
VisionWorks may use other libraries, such as OpenCV (a
popular computer vision library). VisionWorks and these
additional libraries make use of CUDA services by interfac-
ing with NVIDIA’s libcudart library, which implements the
CUDA API. This library interfaces with another NVIDIA
library, libcuda, which implements a lower-level “CUDA
driver” API. This library is responsible for implementing
most of the CUDA GPU runtime; it communicates with
NVIDIA’s GPU device driver through a proprietary API.8

The device driver executes within the operating system and
is directly responsible for managing the GPU.

We extend the simple OpenVX execution model in
VisionWorks to support pipelined multithreaded execution,

6The OpenVX standard does not currently specify a primitive for object
detection, so the user must provide one or use one from a third party.

7Specifically, we refer to our modified version of VisionWorks and a
software library we call libgpui. Our non-VisionWorks-specific software
is publicly available: GPUSync at www.litmus-rt.org, and PGMRT at
https://github.com/GElliott/pgm/.

8The libcuda library communicates with the device driver using the generic
ioctl() Linux system call.



1 vx_image imageRaw ; // graph input : an image
2 vx_array detected ; // graph output : a list of detected pedestrians
3 . . .
4 // instantiate a graph
5 vx_graph pedDetector = vxCreateGraph (. . .);
6 . . .
7 // instantiate additional parameters
8 vx_image imageIYUV = vxCreateVirtualImage ( pedDetector , . . .);
9 vx_image imageGray = vxCreateVirtualImage ( pedDetector , . . .);

10 . . .
11 // instantiate primitives as nodes
12 vx_node convertToIYUV = vxColorConvertNode ( pedDetector , imageRaw , imageIYUV );
13 vx_node convertToGray = vxChannelExtractNode ( pedDetector , imageIYUV , VX_CHANNEL_Y , imageGray );
14 vx_node detectPeds = mySoftCascadeNode ( pedDetector , imageGray , detected , . . .);
15 . . .
16 vxProcessGraph ( pedDetector ); // execute the graph end -to -end

(a) OpenVX code for constructing a graph.

convertToIYUV
(vxColorConvertNode)

convertToGray
(vxChannelExtractNode)

detectPeds
(mySoftCascadeNode)

imageRaw imageIYUV imageGray detected

(b) Bindings of data object parameters to nodes.

convertToIYUV
(vxColorConvertNode)

convertToGray
(vxChannelExtractNode)

detectPeds
(mySoftCascadeNode)

(c) Derived graph structure.

Figure 4: Construction of a graph in OpenVX for pedestrian detection.

where each node is assigned a dedicated thread for execution.
Within the real-time context, we may view each thread as
a sporadic real-time task that executes its node’s primitive
operation once per job. We realize this thread-per-node
execution model through the use of a previously developed
library, PGMRT, which is a portable middleware framework
for managing real-time dataflow applications on multicore
platforms [4]. Fig. 5(b) depicts the resulting software stack.
Although this software stack enables pipelined multithreaded
execution, applications remain at the mercy of the stock GPU
software stack with respect to GPU resource arbitration and
scheduling. As we have demonstrated in prior work [5, 6],
this is insufficient for supporting predictable real-time
execution of GPU-using applications.

We improve upon the prior software stack by integrating
with GPUSync. This is depicted in Fig. 5(c). GPUSync is
an API-driven GPU scheduler, meaning that applications
must explicitly request GPU resources through an API
provided by GPUSync—by default, GPU scheduling is not
transparent to user applications. Unfortunately, VisionWorks
has a large and complex code base. Moreover, the libraries
that VisionWorks uses (e.g., OpenCV) also execute work
on GPUs. We deemed it infeasible to directly modify
VisionWorks and the associated libraries to use the GPUSync
API directly. (Even if this were feasible, it would remain
error-prone, as we would have to comb these large code
bases to identify and evaluate each and every code path
on which the CUDA API is used.) To overcome these
challenges, we developed an additional library, which we
call libgpui (“GPU interposition library”). This library

provides an API that matches the low-level CUDA driver
API. At dynamic-link time (i.e., when a program is initially
launched), libgpui forcibly overrides all CUDA driver API
calls.9 Libgpui is essentially inserted between all user code,
including VisionWorks and the libraries it uses, and the GPU.
With this infrastructure in place, libgpui evaluates every
CUDA driver API call, and invokes the GPUSync scheduler
as needed, before passing these calls onto libcuda. Thus,
libgpui transparently extends GPUSync GPU scheduling to
VisionWorks and all other GPU-using libraries.

In total, our additions to the VisionWorks software stack
took approximately 34K lines of C/C++ code: 15K for
GPUSync, 8K for libgpui, 6K for PGMRT, and 5K to extend
VisionWorks itself.
Ensuring conformance to an analyzable task model.
The timing constraints of interest to us pertain to end-
to-end graph processing times, i.e., the duration of time
from when an input frame is consumed by a source
node to when any corresponding output is generated by
a sink node. In particular, we require that such processing
times are provably bounded. When tasks are scheduled
on CPUs using the clustered earliest-deadline-first (C-
EDF) scheduler10 or other EDF-based scheduling policies,
such bounds can be computed using results of Liu and
Anderson [10] with synchronization-related blocking due
to the usage of GPUSync accounted for using blocking

9This is accomplished through the LD_PRELOAD environment variable,
which can be used to preload shared libraries when a program is launched.

10Under a clustered scheduler, CPUs are partitioned into clusters, each
task is assigned to one cluster, and a task may execute on any CPU in
its assigned cluster.
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Figure 5: Software layers of an application using our modified version of VisionWorks.

bounds from [8]. However, to apply these results, source
nodes must be invoked sporadically, no task can exhibit intra-
task parallelism, and no cycles may exist in any processing
graph. Also, each node of a graph should be viewed as an
individual schedulable entity, rather than the entire graph, to
enable parallelism due to pipelining effects. Unfortunately,
VisionWorks fails to satisfy any of these requirements, hence
the need for our modifications to it.

Conceptually, modifying VisionWorks so that source
nodes are invoked sporadically and intra-task parallelism
is prevented is straightforward, although a few nontrivial
technical details arise. Due to space constraints, we refer the
reader to [8] for a discussion of these details and concentrate
here on explaining our modifications to enable pipelining
and to eliminate graph cycles.

Graph dependencies and pipelining. Recall from Sec. II
that OpenVX does not pass data through graph edges.
Rather, node input and output is passed through singular
instances of data objects. Although graph pipelining is
naturally supported if tasks rather than entire graphs are
schedulable entities, a new hazard arises: a producer node
may overwrite the contents of a data object before the old
contents have been read or written by a consumer node!
Such consumers may not even be a direct successor of the
producer. For instance, we can conceive of a graph where
an image data object is passed through a chain of nodes,
each node applying a filter to the image. The node at the
head of this chain cannot execute again until after the image
has been handled by the node at the tail. In short, the graph
cannot be pipelined.

This pipelining issue can be resolved by sufficiently
replicating data objects, as illustrated in Fig. 6. If we
replicate a given data object N times, then the jth invocation
of a node (i.e., a job) that accesses it accesses the ( j modN)th

replica. Clearly, N must be set sufficiently large, for
otherwise, data objects could still be overwritten even
with replication. Fortunately, prior work of Goddard and
Jeffay [11, 12, 13] can be leveraged to derive safe replication
bounds that eliminate the possibility of overwriting. These
bounds are determined by examining the invocation rates
of the nodes that access a given data object; bounds on any
node’s invocation rate can be determined as a function of
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(b) Vi with replicated data objects.

Figure 6: Replicating data objects to enable pipelining.

the invocation rate of the source node of its graph. Further
details concerning replication are given in an appendix.

Support for back-edges. Computer vision algorithms that
operate on video streams often feed data derived from prior
frames back into the computations performed on future
frames. For example, an object tracking algorithm must
recall information about objects of prior frames if the
algorithm is to describe the motions of those objects in
the current frame. OpenVX defines a special data object
called a “delay,” which is used to buffer node output for
use by subsequent node invocations. A delay is essentially
a ring buffer used to contain other data objects (e.g., prior
image frames). The oldest data object is overwritten when
a new data object enters the buffer. The number of data
objects stored in a ring buffer (or the “size” of the delay)
is tied to how “far into the past” the vision algorithm must
go. For example, suppose a node operates on frame i and it
needs to access copies of the last two prior frames. In this
case, the size of the delay would be two.

The consumer node of data buffered by a delay may
appear anywhere within a graph. It may be an ancestor
or descendant of the producer node—it may even be the
producer itself. A back-edge is created when the consumer
node of a delay is not a descendant of the producer node
in the graph derived from non-delay data objects. For
example, in Fig. 7, which is considered in more detail
later, the delay edges sourced from the “Harris Feature
Tracker” node are back-edges; the other delay edges are not.
As seen in Fig. 7, back-edges ostensibly result in cycles.
This is problematic because the end-to-end response-time
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Figure 7: Dependency graph of video stabilization application.

analysis of Liu and Anderson [10] applies only to acyclic
graphs. In the appendix, we explain how to break such
cycles. Two basic approaches may be applied. First, if the
delay represented by a back-edge involves accessing data
sufficiently “far into the past,” then no delay actually occurs
as a result and so there is really no cycle. Second, if a
delay actually can occur, then it may be possible to break
the corresponding cycle by combining certain graph nodes
into “super nodes” to enforce a desired sequential execution
pattern. Of course, such an approach sacrifices parallelism.

Scheduling policies. In our modified version of Vision-
Works, the programmer may specify which scheduling policy
to use in allocating CPU time to tasks (i.e., graph nodes).
Our modified VisionWorks supports the standard Linux
SCHED_OTHER and SCHED_FIFO policies, as well as
SCHED_LITMUS. Though our analysis supports sporadic
source-node releases, our implementation supports only
the periodic release of such nodes. We use POSIX real-
time timers to implement periodic source-node releases
under the standard Linux policies. We rely upon the
periodic job release infrastructure of LITMUSRT for the
SCHED_LITMUS policy.

We assume EDF-based scheduling under the
SCHED_LITMUS policy. When the SCHED_FIFO
policy is employed, the programmer supplies a “base”
graph priority. The priority of the thread that implements a
given node is determined by taking the length of the longest
path between that node and the source node of its graph,
plus the base graph priority. Thus, thread priorities increase
monotonically down the graph. We use this prioritization
scheme to expedite the movement of data down a graph. It
is important to finish work deeper in the graph, since graph
execution is pipelined.

IV. EVALUATION

In this section, we evaluate the observed real-time
performance of our enhanced version of VisionWorks. We
begin with a description of the computer vision application
we used in this evaluation. We then discuss our experimental
setup and present our results.

Video stabilization. VisionWorks includes a variety of
demo applications, including a pedestrian detection applica-
tion, not unlike the one illustrated in Fig. 4. However, the
pedestrian detection application is relatively uninteresting
from a scheduling perspective—it is made up of only a

handful of nodes arranged in a pipeline. In our evaluation,
we use VisionWorks’ “video stabilization” demo, since the
application is far more complex and uses primitives common
to other computer vision algorithms. Video stabilization
is used to digitally dampen the effect of shaky camera
movement on a video stream. Vehicle-mounted cameras can
be prone to camera shake. A video stream may require
stabilization as a pre-processing step before higher-level
processing is possible. For example, an object tracker may
require stabilization—too much shake may decrease the
accuracy of predicted object trajectories.

Fig. 7 depicts the dependency graph of the video
stabilization application. Table I gives a brief description of
each node in this graph. Video stabilization exercises many
types of primitives that are common to other computer vision
algorithms; this makes it a good candidate for system evalua-
tion purposes. For example, image pyramid computation is a
core step in many object detection algorithms. We make note
of two characteristics of this graph. First, video stabilization
operates over a temporal window of several frames. This
is needed in order to differentiate between movements due
to camera shake and desired camera translation (i.e., stable
long-term movement of the camera). These inter-frame
dependencies are implemented using OpenVX delay data
objects, which are reflected by delay edges in Fig. 7. Second,
although the primitive of a node may execute entirely on
CPUs, it may still use a GPU to pull data out of GPU
memory through memory copy operations. The “Display
Stabilized Image” node is such an example. Here, the “Warp
Perspective” node performs its computation and stores a
stabilized frame in GPU memory. The Display Stabilized
Image node pulls this data off of the GPU through DMA.
Under GPUSync, this means that the Display Stabilized
Image node will compete with other nodes for GPU tokens,
even though it does not use the GPU to perform computation.
Experimental setup. In this evaluation, we focus on
multicore+GPU scheduling for a computing platform with a
single GPU. This focus is motivated by two reasons. First,
such a multicore single-GPU system reflects many common
embedded system-on-chip computing platforms available
today. Second, our alpha-version of VisionWorks does not
allow nodes of a processing graph to span several GPUs.11

Our experimental workload was comprised of 17 in-

11This is not a fundamental shortcoming of OpenVX or VisionWorks.
Rather, this capability had not yet been implemented.



Node Name Function
Read Frame Reads a frame from the video source.
Duplicate Color Image Copies the input color image for later use.
Convert To Grayscale Converts a frame from a color to grayscale (i.e., “black and white”) image.
Harris Feature Tracker Detects Harris corners (features) in an image.
Compute Image Pyramid Resizes the image into several images at multiple resolutions.
Compute Optical Flow Determines the movement of image features from the last frame into the

current frame.
Compute Homography Computes a “homography matrix” that characterizes the transformation

from the last frame into the current frame.
Homography Filter Filters noisy values from homography matrix.
Smooth Homography Merges the homography matrices of the last several frames into one.
Warp Perspective Transforms an image using a provided homography matrix.

(Stabilization occurs here.)
Display Stabilized Image Displays the stabilized image.

Table I: Description of nodes used in the video stabilization graph of Figure 7.

Period Number of Base Priority
Graphs (for SCHED_FIFO only)

20ms 2 75
30ms 2 60
40ms 2 45
60ms 5 30
80ms 4 15

100ms 2 1

Table II: Task set using VisionWorks’ video stabilization demo.

stances of the video stabilization application in order to load
the CPUs and GPU engines. This is reflective of a use-case
scenario where multiple computationally intensive vision
processing computations are multiplexed onto a common
hardware platform (e.g. to due size, weight, and power
constraints). Each processing graph was executed within its
own Linux process. Each graph node was executed by a
dedicated thread, resulting in eleven threads per process,
and 187 threads across all 17 processes. To each graph we
assigned a period that was shared by every real-time task
of the nodes therein. As shown in Table II, each of the
17 considered processing graphs was assigned one of six
different periods. These periods represent a range of those
we find in automotive applications.

We used a dual-socket Xeon X5060 hardware platform,
which is similar to that depicted in Fig. 1, as our evaluation
platform. Each socket contains six CPU cores running
at 2.67GHz. Real-time tasks were isolated to six cores on
one socket; the remaining socket was used for performance
monitoring. All GPU calculations of the 17 graphs were
executed on a single NVIDIA Quadro K5000 “Kepler” GPU.
We used CUDA 6.5 and NVIDIA GPU driver 331.62. By
design, our 17 graphs heavily loaded the six CPUs and GPU
to near capacity.12

We examine the real-time performance of our workload
on four different system configurations: Linux’s fixed-
priority scheduler (SCHED_FIFO); Linux’s general-purpose

12During experimentation, the system tool top reported the CPUs to be
approximately 96% utilized (a total CPU utilization of about 5.76).
Similarly, the NVIDIA tool nvidia-smi reported the GPU execution
engine to be approximately 66% utilized.

“completely fair” scheduler (SCHED_OTHER); LITMUSRT’s
C-EDF scheduler; and LITMUSRT’s C-EDF scheduler with
GPUSync. All but the last of these configurations lack real-
time management of the GPU, and instead default to the
resource arbitration mechanisms used collectively by CUDA,
the GPU driver, and the GPU hardware. For brevity, we
henceforth refer to each of these configurations according
to their scheduling policy (and we refer to the LITMUSRT

configuration with GPUSync as “GPUSync”).
Under the SCHED_FIFO policy, processing graphs were

assigned the base priorities listed in Table II. (Under
SCHED_FIFO, priorities with a greater numerical value
have higher priority.) A fixed priority for the thread of each
node was derived using the method we described at the end
of Sec. III. The gaps between base priorities ensure that the
range of thread priorities of graphs with different periods
never overlap. As a result, the priority of any thread within
a given graph will always exceed those of threads of graphs
with lower base priorities.

For the LITMUSRT-based configurations, we divide our
two-socket platform into two processor clusters, one cluster
per socket. This is accomplished through LITMUSRT’s C-
EDF scheduler. Since our real-time tasks only execute within
one cluster, we may also think of these configurations as
using a global EDF (G-EDF) scheduler for six CPUs.

As we described in Sec. II, GPUSync is highly config-
urable. For GPUSync, we set the number of GPU tokens,
denoted by the symbol ρ , to ρ = 3. An additional parameter,
f , which controls the maximum length of FIFO queues
within the locking protocol that arbitrates access to tokens,
was set to f = 2. Together, these values for ρ and f lead to
a locking protocol structure that is optimal with respect to
suspension-oblivious analysis for a system of six CPUs [8].
We configured GPUSync’s engine locks to prioritize requests
in FIFO order.13

To ensure that each configuration performed to the best of
its ability, we used libgpui to enforce two behaviors across

13We also evaluated seven additional GPUSync configurations, which tested
different combinations of values for ρ , f , and engine lock prioritization
methods. Due to page constraints, we present these results in [8].



Configuration Total % of Normalized and Averaged
Frames Dropped Max 99.9th% 99th% Median Mean σ

SCHED_OTHER 0 9.20 6.33 1.65 0.97 1.00 0.37
SCHED_FIFO 4.77 11.12 9.83 4.25 1.89 1.88 0.99

LITMUSRT C-EDF 0 12.12 8.40 4.22 0.86 1.00 0.93
GPUSync 0 3.67 2.37 1.39 0.99 1.00 0.15

Table III: Average normalized completion delay data.

all system configurations. First, libgpui set the appropriate
CUDA runtime environment parameters to force all tasks
to suspend while waiting for GPU operations to complete.
Second, libgpui automatically routed GPU operations to
distinct per-node (per-thread) CUDA “streams.” CUDA uses
“streams” to order serially dependent GPU operations. In
CUDA 6.5 and earlier, all threads within a process share
the same stream by default, leading to false dependencies
among GPU operations issued by different threads. By
using streams, we avoid needless serialization of GPU
operations.14 For GPUSync, libgpui invoked GPUSync
as needed prior to passing intercepted CUDA driver API
calls on to the underlying CUDA library; libgpui passed
intercepted API calls on to the underlying CUDA library
immediately under the other configurations.

We executed our task set under each of the above system
configurations for 400 seconds. Each graph processed a
pre-recorded video file, which we pinned in system memory
in order to avoid delays to due to disk access and page
faults.

Completion delays. We require a common observational
framework in order to fairly compare the four system
configurations. Although LITMUSRT offers kernel-level
low-overhead tracing capabilities, we are unable to make
use of them for the non-LITMUSRT-based configurations.
Instead, we opt for a simpler and more straightforward
method. At the end of its execution, the sink node (i.e., the
“Display Stabilized Image” node) in each processing graph
records a timestamp. We compute the duration between
consecutive completion timestamps of each graph to obtain
a “completion delay” metric. The benefit to using the
completion delay metric is that we may make observations
from user space; we do not require special support from
the operating system, besides access to accurate hardware
time counters (which are commonly available). There are
two limitations, however. First, completion delay metrics are
only useful within the context of periodic task sets, since
task periods not only ensure a minimum separation time
between job releases of a given task, but also a maximum
separation time. Second, the metric is inherently noisy. For
example, as depicted in Fig. 8, if a periodic task with period
pi meets all of its deadlines and always executes for its
worst-case execution time ei, then its completion delay may
range within [ei,2pi −ei]. Despite these limitations, we feel
that observed completion delays are useful in reasoning
about the real-time runtime performance of our various

14The recently released CUDA 7.0 implements this same behavior.
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Figure 8: Scenarios that lead to extreme values for measured
completion delays.

system configurations.
Results. Table III summarizes our collected data. We
compute the total number of video frames we expect our
video stabilization graphs to process within an allotted time,
given graph periods. We say that a given configuration has
“dropped” frames if the actual number of processed frames
falls short of the number expected. The second column
of Table III gives the percentage of dropped frames with
respect to the expected number of processed frames. The
remaining columns give information on completion delay
metrics. We normalize each measured completion delay
by dividing the measurement by the period of the task’s
graph. We then analyze the normalized completion delays
collectively. In Table III, we give the maximum, 99.9th%,
99th%, median, and mean normalized completion delay for
each configuration. The table also includes the standard
deviation, denoted by σ , from the mean. We highlight the
“best” values in each column. We consider values closest
to 1.0 as best for average normalized completion delays,
and values closest to zero as best for standard deviations.
We make the following observations.

Observation 1. Mean completion delays are generally good
under SCHED_OTHER, LITMUSRT, and GPUSync.

In Table III, we see that SCHED_OTHER, LITMUSRT,
and GPUSync all had a mean of approximately 1.0. This
reflects good average-case behavior. However, we also
observe that these configurations differ significantly in terms
of maximum, 99.9th%, and 99th%, median completion delay.

Observation 2. GPUSync was superior among the four
configurations.

In Table III, we see that GPUSync had the best outlier
behavior among the four configurations. For example, the



Figure 9: PDFs of normalized completion delay data. (This graph is probably best viewed in color.)

maximum completion delay under GPUSync was 3.67. Com-
pare this to the maximums of 9.20, 11.12, and 12.12 for the
SCHED_OTHER, SCHED_FIFO, and LITMUSRT, respec-
tively. In fact, the maximum completion under GPUSync was
less than the 99th% completion delay under SCHED_FIFO
and LITMUSRT. The superiority of GPUSync is also reflected
by its small standard deviation of only 0.15. This is more
than half that of the next-best, SCHED_OTHER.

Observation 3. The real-time configurations SCHED_FIFO
and LITMUSRT performed poorly.

We look at the percentage of dropped frames to detect
unschedulability, since this is a sign of task starvation. We
see that among the tested configurations, SCHED_FIFO
dropped approximately 4.77% of its video frames. Moreover,
it is the only configuration to drop frames. This is somewhat
disappointing, since SCHED_FIFO is meant for use with
real-time tasks on POSIX-compliant platforms. However, we
see that this standard real-time scheduler actually exhibited
some of the worst behaviors of the four configurations.

LITMUSRT exhibits bad outlier behavior. For example, its
max, 99.9th%, and 99th% completion delays are greater than
those of the SCHED_OTHER and GPUSync. This high
degree of variability is also reflected by its relatively large
standard deviation of 0.93. This is over 2.5 and 6.2 times
greater than the standard deviation of SCHED_OTHER and
GPUSync, respectively.

The poor behavior of the real-time configurations that
lack real-time GPU management may be due to busy-waiting,
despite the fact that libgpui forces tasks to suspend while
waiting for GPU operations to complete. Since GPUSync
does not exhibit this behavior, we suspect this busy-waiting
may occur within the CUDA runtime when tasks wait for
GPU resources to become available. To explain how the
real-time schedulers are sensitive to busy-waiting, consider
that the SCHED_FIFO and LITMUSRT schedulers always
schedule the m-highest priority ready tasks on m CPUs
(in this experiment, m = 6). CPU time is wasted if any of
these tasks busy-waits for too long. The amount of CPU
time wasted in this way is limited under SCHED_OTHER,
since this general-purpose scheduler attempts to distribute
CPU time equitably—busy-waiting tasks are soon preempted.

GPUSync avoids this problem altogether by performing
GPU resource arbitration “up-front” with real-time locking
protocols.

Table III give us insight into the worst- and average-
case behaviors of the tested system configurations. However,
the distribution of observed completion delays is somewhat
obscured. To gain deeper insights into these distributions, we
plot the probability density functions (PDFs) of normalized
completion delays in Fig. 9. Each PDF is derived from
a histogram with a bucket width of 0.005. The x-axis
denotes a normalized completion delay. The y-axis denotes
a probability density. To determine the probability that a
normalized completion delay falls within the domain [a,b],
we sum the area under the curve between x = a and x = b;
the total area under each curve is 1.0. Generally, distributions
with the greatest area near 1.0 are best.

Our goal is to understand the shape of completion delay
distributions, so each distribution is plotted on the same
domain and range. To facilitate easy comparisons, we clip
the domain of each PDF at x = 2.5, so the long tails of
some of these distributions are not depicted. However, we
have examined worst-case behaviors in Table III, so we do
not revisit the topic here. We make several observations.

Observation 4. The PDF for GPUSync show that normal-
ized completion delays are most likely near 1.0.

We see this in line 4 of Fig. 9. This result is not
surprising, given prior Obs. 2. However, we also see that this
PDF closely resembles the curve of a normal distribution.
This trend is harder to see in the other PDFs. Another
characteristic of the PDF for GPUSync is that it is clearly
unimodal. This is unlike the PDF for SCHED_FIFO (line 2),
which has at least four distinct modes (indicated by the
four peaks in the PDF), or the PDF for LITMUSRT (line 3),
which appears to be bimodal. The PDF for SCHED_OTHER
(line 1) has a similar shape to the PDF for GPUSync (line 4).
However, the peak of line 1 has a wider base than line 4.
Line 1 also lacks the symmetry shown by line 4.

Observation 5. The PDF for LITMUSRT without GPUSync
suggests bursty completion behaviors.



In Fig. 9, line 3 depicts the PDF for the LITMUSRT

configuration. The PDF appears to have two modes. One
mode is near x = 0.05; the other is centered around 1.0. Not
depicted in this figure is the long tail of the PDF. When a
job of a sink node of the video stabilization graph completes
late, work can “back up” within the graph. A sink node
that has fallen behind may complete several jobs in quick
succession as it catches up, especially under C-EDF, which
gives priority to late work. Consequently, one very long
completion delay may be followed by a sequence of short
completion delays. The long tail of line 3 indicates that long
completion delays occur (this tail has been clipped at x= 2.5,
but we can still observe that line 3 lies above the others after
x = 2). The first mode (the one near x = 0.05) indicates the
corresponding “catch-up” behavior. Although LITMUSRT

did not drop any frames, the playback of the stabilized
video is far from smooth. Indeed, LITMUSRT exhibits some
behaviors less desirable than SCHED_OTHER.

Due to space constraints, the above discussion has
focused on only a subset of our results. A much more
extensive overview that covers significantly more collected
data and further experiments can be found in [8].

V. CONCLUSION

The need to support real-time graph-based computer
vision applications in embedded domains such as in the
automotive industry is of growing importance. Moreover, to
reap size, weight, and power advantages, there is growing
interest in using GPUs in supporting such applications.
Given that OpenVX is a ratified standard, it is likely to
see widespread use for this purpose in the future. The case
for adopting OpenVX is further strengthened by NVIDIA’s
dominance in the GPU sector and their implicit backing of
OpenVX through the development of VisionWorks.

Unfortunately, when real-time correctness is a concern,
the use of OpenVX creates several challenges. In this paper,
we have discussed these challenges and have presented
techniques for dealing with them. We have also reported
on our efforts in implementing a version of VisionWorks
that incorporates these techniques and leverages the GPU-
management mechanisms of GPUSync to support predictable
real-time execution. Additionally, we have demonstrated the
increased predictability made possible by our new Vision-
Works variant through a case study evaluation involving a
complex computer vision workload.

The study presented in this paper focused on observed
runtime behavior rather than analytically predicted schedu-
lability. We are currently planning to augment this runtime
study by conducting a major schedulability study in which
analysis-related tradeoffs pertaining to the workloads and
platforms considered in this paper will be assessed. This
will be a significant undertaking because both the considered
workloads (graph-based computer vision applications) and
platforms (heterogeneous multicore+GPU platforms) are
complex. The basic schedulability analysis needed to drive
such a study can be obtained by applying the techniques

sketched in the appendix within the overall analytical
framework associated with GPUSync described in [8]; in a
forthcoming paper, we plan to describe the overall analysis
framework that results from this combination of results in
greater detail. To conduct the planned schedulability study,
this analysis will need to be carefully extended to incorporate
system overheads. Additionally, GPUSync is the source of
continual development and new variants of it may raise new
analytical questions.
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APPENDIX A.
SKETCH OF GRAPH TRANSFORMATION TECHNIQUES

We sketch here in greater detail the graph transformation
techniques described in Sec. III.

Prior related work. Liu and Anderson examined dataflow
applications on globally scheduled multiprocessors [10].
They showed that task response times are bounded under G-
EDF scheduling, without utilization loss. This result builds
upon several prior results, which we review next.

Goddard investigated DAG-based systems specified via
the processing graph method (PGM) in his dissertation [11].
In PGM graphs, data movement is abstracted by specifying
the movement of “tokens” through the graph. The rules by
which tokens are produced and consumed along a graph edge
are very general. The DAG-based systems considered in our
work are special-case PGM graphs in which “tokens” are
produced and consumed one at a time. Goddard [11] showed
that any PGM-specified system can be naturally represented
by a corresponding rate-based (RB) task system [13]. In
a RB system, the long-term invocation rate of any task
stays within a specified bound, but over short intervals such
bounds may be exceeded.

Based on prior uniprocessor results of Jeffay and God-
dard [11, 13], Liu and Anderson developed techniques to
transform a RB task system to a sporadic one for which
response times are bounded under G-EDF [10]. In a RB task
system, consecutive jobs of the same task may arrive either
“too close together” (their separation is less than the task’s
period) or “too far apart” (their separation is more than
the task’s period). The latter possibility is already handled
by the sporadic task model. Jeffay and Goddard showed
that the former possibility can be dealt with by deadline
postponement, i.e., by ensuring that consecutive deadlines
of the same task have a separation at least its period.

Liu and Anderson obtain a similar effect by computing
redefined release times that have the proper separation for
any task, by computing redefined deadlines based on the
redefined release times, and by potentially allowing a job
to execute before its redefined release time—this is called
early releasing. When applied to the tasks that comprise
the nodes of a DAG, these redefinitions cause job release
times to be shifted into the future by a bounded amount.
Intuitively, this is because each task’s long-term invocation
rate is bounded. This property ensures that job response
times, when computed with respect to the original, unaltered
release times, remain bounded.

Fig.10 depicts a partial schedule that illustrates these
ideas. In this figure, T A

l, j denotes the jth job of the task
associated with the node A of the lth DAG. The top line of
the schedule shows the original RB releases and deadlines.
Observe that T A

l,1 and T A
l,2 are released “too close together.”

The bottom line shows the redefined releases and deadlines.
Note that a proper spacing is maintained here (as given by
the sporadic task’s period, which is 3 time units). Note also
that T A

l,2 and T A
l,3 are both “early released,” i.e., they are

𝑇𝑙,1
𝐴 𝑇𝑙,2

𝐴 𝑇𝑙,3
𝐴 𝑇𝑙,4

𝐴

RB job
release

RB job
deadline

Redefined
sporadic release

Redefined
sporadic deadline

0 2 4 6 8 10 12

Figure 10: Illustration of redefined release times and deadlines.
This figure is adapted Fig. 8 in [10].

scheduled before their actual (sporadic) release time.
Devi and Anderson showed that for any sporadic task

system that does not cause over-utilization, deadline tardi-
ness is bounded for any task [14]; this implies that response
times are bounded as well. This result holds regardless of
whether early releasing is allowed or whether scheduling
is preemptive or non-preemptive (thus, the non-preemptive
execution on GPUs is supported).

Taken together, the results reviewed here can be used
to show (as Liu and Anderson did [10]) that bounded
response times can be ensured for PGM-based task systems
under G-EDF with no utilization loss. When applied in our
setting, there is some utilization loss due to GPU-related
priority-inversion-related blocking, which we deal with using
suspension-oblivious analysis [8]. Similar results can be
applied within a single cluster under C-EDF scheduling.

Handling delay edges. Delay edges that are back edges
(ostensibly) create cycles, which are not supported in the
analysis reviewed above. In that which follows, we consider
a delay edge d from node A to node B. Also, we introduce
two parameters k and h, where 1 ≤ k ≤ h, to represent the
range of the back-trace history associated with the delay
edge d. In particular, with respect to the delay edge d, T B

l, j
may require data produced by the jobs T A

l, j−h, . . . ,T
A

l, j−k, but
not by jobs outside of this range. In most existing computer
vision algorithms, k = 1.

If d does not cause cycles, i.e., it is a delay edge such as
that from “Duplicate Color Image” to “Warp Perspective” in
Fig. 7 that is not actually a back edge, then it can simply be
replaced by a forward edge f . To see why this is sufficient,
observe that the original delay edge d indicates that T B

l, j
cannot be invoked until T A

l, j−h, . . . ,T
A

l, j−k have completed.
However, because tasks are sequential, if T A

l, j has completed
(as indicated by the forward edge), then these prior jobs
must have completed as well.

If d does cause cycles, i.e., it is a back edge such as that
from “Harris Feature Tracker” to “Compute Optical Flow”
in Fig. 7, then the situation is more complex. Referring
back to our review of related work above, if the redefined
release time of T B

l, j is after the latest finish time of T A
l, j−k (as

given by response-time analysis), then no cycle impacting
the analysis is in fact introduced. In this case, d can simply
be removed (from an analysis point of view) because all
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Figure 11: Graph with no delay edges.

required precedence relationships are implicitly satisfied.
If the redefined release time of T B

l, j does not meet the
requirement state in the prior paragraph, then a cycle that
impacts analysis truly does exist. One way to handle this
situation is by replacing nodes A and B by a single “super
node.” Each incoming edge to either A or B becomes an
incoming edge to the super node, and each outgoing edge
from either A or B becomes an outgoing edge from the super
node. Within the super node, we serialize the execution of
jobs of A and B. That is, to start the execution of either T A

l, j
or T B

l, j, both T A
l, j−1 and T B

l, j−1 must have completed. This
ensures that the delay-edge requirement is implicitly satisfied.
This transformation is analytically safe and sufficient to
eliminate the cyclic delay edge d at the cost of reducing
parallelism. While this approach may seem heavy-handed,
recall that VisionWorks, as originally defined, effectively
executes entire graphs as super nodes. As an example,
consider again the graph in Fig. 7. If we combine the two
nodes “Harris Feature Tracker” and “Compute Optical Flow”
into a single super node, as shown in Fig. 11, and replace
all delay edges that are not back edges by ordinary forward
edges, then all delay edges and cycles are eliminated.

Forward edge replica bounds. As mentioned in Sec. III,
safe pipelined execution can be ensured by replicating
data objects. For the moment, we ignore issues created
by the presence of delay objects and focus only on non-
delay data objects. For such data objects, needed replica
bounds can be obtained by extrapolating from prior work
by Goddard and Jeffay on bounding the size of token
buffers in PGM graphs [12]. Their work can be applied
because, as stated above, the graphs we consider are special
cases of those considered by them. Moreover, even though
their work pertained to uniprocessors and ours pertains
to multiprocessors, their computed buffer bounds were
obtained by applying per-node bounds on invocation rates
and response times to producing and consuming nodes. It is
only necessary that these per-node bounds exist for correct
buffer bounds to be obtained, and such per-node bounds
exist in both the uniprocessor and multiprocessor cases.

It can be shown that by applying Theorems 3.3 and 4.1
from [12] in our setting, the desired replica bound for a
forward edge f from node X to node Y in the lth graph is

N( f ) = max
{

1,
⌈

sY +R(Y )− sX

pl

⌉}
,

where pl is the graph’s period, sX (respectively, sY ) is the
start time (very first job release) of the task that implements
node X (respectively, Y ), and R(Y ) is the response-time

B A

The execution of         depends
on the completion of        .

𝑇𝑙,𝑗
𝐴

𝑇𝑙,𝑗
𝐵

The execution of         may need data 
from the results of             ,…,            .

𝑇𝑙,𝑗
𝐵

𝑇𝑙,𝑗−ℎ
𝐴 𝑇𝑙,𝑗−𝑘

𝐴

The forward-edge path 
from B to A.

The delay edge d ,
which is a back edge.

Figure 12: Illustration for the ring buffer bound for a delay edge
q that is a back edge.

bound established for the task that implements node Y . We
do not have sufficient space to defend this bound here,
because such a defense would entail introducing much
additional notation.
Delay edge ring buffer bounds. As mentioned in Sec. III,
the back-trace history data indicated by a delay edge is
stored in a ring buffer. The size of such buffers must be
bounded as well. To explain how this is done, we consider
such a delay edge d from a node A to a node B.

If d is not a back edge, then as explained above, we
replace it by an forward edge f . Let N( f ) denote the replica
bound computed for this forward edge as discussed above.
Because f replaces a delay edge, this bound may need to be
augmented. In particular, the bound N( f ) implies that when
the currently active job of node B is T B

l, j, no job of node
A later than the T A

l, j+N( f )−1 has already completed. Now,
accounting for the semantics of the replaced delay edge,
T B

l, j may require the result of some prior jobs of node A but
no earlier than the T A

l, j−h (recall the definition of h given
earlier). Thus, a buffer size of N( f )+h is sufficient.

If d is a back edge, then we argued above that it either
can be analytically removed or can be encapsulated within
a super node. In either case, the constraints implied by the
original delay edge must be met. It is relatively easy to show
that in both cases, such constraints will hold assuming a
buffer size of h. To see this, observe that because d is a back
edge, there is a forward-edge path from node B to node A,
as shown in Fig. 12. Suppose that the most recently ready
job of node A is T A

l, j. Due to the forward-edge path, T A
l, j

being ready implies that T B
l, j has already completed, which

means only T B
l, j+1 or later jobs of node B could execute next

and need delay buffer data. Therefore, the earliest delay
buffer data that will be needed in the future is the result of
the T A

l, j+1−h. Moreover, since T A
l, j is the most recently ready

job of node A, no job of node A later than T A
l, j is ready, let

alone has completed. Thus, a buffer size of h is sufficient.
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